线性代数在实际生活中应用实例

来源 :大陆桥视野·下 | 被引量 : 0次 | 上传用户:ttgxa
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  【摘  要】线性代数理论有着悠久的历史和丰富的内容。随着科学技术的发展,特别是电子计算机使用的日益普遍,作为重要的数学工具之一,线性代数的应用已经深入到了自然科学、社会科学、工程技术、经济、管理等各个领域。但是对于刚接触线性代数的大多数学生而言,仍然感到其理论比较枯燥,不知道学习线性代数到底能用到生活中的哪些地方,本文将举出几个其在实际生活中的例子来展示线性代数应用的广泛性,同时也能更好的加深学生对知识点的理解。
  【关键词】线性代数; 矩阵; 方程组
  1 交通问题
  四个城市的单向航线图如下
  若令,其中bij=1表示i城市到j城市有航线;bij=0表示i城市到j城市无航线。
  四个城市之间的航线图可用矩阵表示为  c42=2表示从城市4中转一次到城市2有两条,航线。类似可计算出B3,B4,…Bn,矩阵中每个元素表示 城市经两次,三次,…(n-1)中转到j城市的单向航线条数。
  2 药方配置问题
  问题:某中药厂用九种中草药(A-I)根据不同的比例配制成了7中特效药,各用量成份见表一(单位:克)
  1号
  成药 2号
  成药 3号
  成药 4号
  成药 5号
  成药 6号
  成药 7号
  成药
  A 10 12 14 12 20 38 100
  B 12 0 12 25 35 60 55
  C 5 3 11 0 5 14 0
  D 7 9 25 5 15 47 35
  E 0 1 2 25 5 33 6
  F 25 5 35 5 35 55 50
  G 9 4 17 25 2 39 25
  H 6 5 16 10 10 35 10
  I 8 2 12 0 2 6 20
  (1)某医院要购买这七种特效药,但药厂的第3号药和第6号药已经卖完,请问能否用其它特效药配制出这两种脱销的药品?
  (2)现在医院想用这7种草药配制三种新的特效药,表2给出了三种新的特效药的成份,请问能否配制?如何配制?
  1号新药 2号新药 3号新药
  A 40 162 88
  B 62 141 67
  C 14 27 8
  D 44 102 51
  E 53 60 7
  F 50 155 80
  G 71 118 38
  H 41 68 21
  I 14 52 30
  解:(1)把每一种特效药看成一个九维列向量,分析7个列向量构成向量组的线性相关性。
  若向量组线性无关,则无法配制脱销的特效药;
  若向量组线性相关,并且能找到不含 u3,u6 的一个最大线性无关组,则可以配制3号和6号药品。
  经计算该向量组线性相关,一个最大无关组为u1,u2,u4,u5,u7且u3=u1+2u2,u6=3u2+u4+u5.所以可以配置处这两种脱销的药品。
  (2)三种新药用v1,v2,v3表示,问题化为v1,v2,v3能否由u1—u7线性表示,若能表示,则可配制;否则,不能配制。
  经计算可得:v1=u1+3u2+2u4,v2=3u1+4u2+2u4+u7,v3则不能被线性表示,所以无法配药。
  3 产品成本的计算
  某厂生产三种成品,每件产品的成本及每季度生产件数已知。试提供该厂每季度在每种产品上的成本表。
  成本矩阵为M,
  季度产量矩阵为P,
  解 将M和P相乘,得到的矩阵设为Q,Q的第一行第一列元素为Q(1,1)=0.10×4000+0.30×2000+0.15×5800=1870
  其中
  不难看出,Q表示了夏季消耗的原材料总成本。
  4 人口迁徙模型
  设在一个大城市中的总人口是固定的。人口的分布则因居民在市区和郊区之间迁徙而变化。每年有6%的市区居民搬到郊区去住,而有2%的郊区居民搬到市区。假如开始时有30%的居民住在市区,70%的居民住在郊区,问10年后市区和郊区的居民人口比例是多少?30年、50年后又如何?
  解 这个问题可以用矩阵乘法来描述。把人口变量用市区和郊区两个分量表示。
  一年以后,市区人口为 ,
  郊区人口,用矩阵乘法来描述,可写成:
  从初始到k年,此关系保持不变,因此上述算式可扩展为
  .
  经Mablab计算可得:
  当无限增加时间k,市区和郊区人口之比将趋向一组常数0.25/0.75。
  5 化学方程的配平
  试确定x1,x2,x3,x4,配平上面化学方程式。
  解 使方程两边原子数相同称为方程式的配平。则可得到下列方程
  写成矩阵方程为
  解方程组得到未知量x1,x2,x3,x4的值。
  以上是几个简单的能用线性代数的知识解决的案例,其中比较复杂的计算可用数学软件Matlab来解决,随着计算机的发展,线性代数的应用会越来越多,越来越简单。
  参考文献:
  【1】线性代数∕段复建主编.— 北京:科学出版社,2010.
  【2】线性代数的应用 西安理工大学数学系.
  【3】黄玉梅,彭涛.线性代数中矩阵的应用典型案例 兰州大学学报(自然科学版)
  基金项目:
  2014年广西高等教育教学改革重点项目《数学软件在独立学院数学类课程中的应用研究与实践》(项目编号:2014JGZ192);2015年广西科技大学鹿山学院转型发展专项项目《公共数学课“教、学、评”的研究与实践》(项目编号:2015ZXZD004)。
其他文献
小于胎龄儿(SGA)体格发育障碍的发生率较适于胎龄儿高,而且其经常并发围生期窒息,所以常可能导致一些神经系统后遗症。SGA的发生主要与母体因素有关,包括妊娠妇女的人口特征
一、激励与激励机制的概念激励是组织通过设计适当的外部奖酬形式和工作环境.以一定的行为规范和惩罚性措施,借助信息沟通,来激发、引导、保持和规划组织成员的行为,以有效地实现
lincRNAs在新陈代谢、生长发育,以及疾病等方面发挥功能,并在各个层面调控基因表达。作为关键的调控因子,lincRNAs在小鼠ES细胞中发挥重要的调节作用。本课题将利用高通量数
氧气是维持人体正常生理机能所需要的气体,当从事体力劳动时,人体耗氧量增加;井下放顶煤回采工作面上隅角区域受各类因素制约,氧含量较其他地点偏低,经常处于18.5%以下,当人
Performance in Caribbean and African Literatures as Subversion of the Colonial Order
编者按:药品采购缺乏专业性、药房管理混乱、药品配送不及时、药价虚高、药品服务环节进口药和高价药横行,廉价药越来越边缘,这些乱象相信医院的管理者再熟悉不过了。一些医
介绍了烷基化和废酸装置防腐蚀设计材质选型的特点,并对烷基化和废酸装置典型的腐蚀回路进行分析,提出有针对性的防腐蚀策略。