论文部分内容阅读
在智能交通领域内,实时准确的短时交通流预测是实现智能交通诱导和控制的关键技术。交通流时间序列数据具有数量庞大的特性,很多方法不能有效地提高数据利用率,从而造成预测精度低下的问题。循环神经网络(Recurrent Neural Network,RNN)对时间序列的处理具有很高的效率,对此,本文在RNN的基础上,提出了长短时记忆(Long-Short Term Memory,LSTM)模型,并通过改变其内部参数和结构,建立了3种LSTM变体模型来对15 min短时交通流进行预测。实验结果表明,LSTM及其变体模型在预测准确性上,精度都达到了5%以内,相较于RNN都提高了3个百分点;而在LSTM类模型中,尤以LSTM3的预测性能最高,可用于长期的短时交通流预测。