针对图像来源鉴别中支持向量机的研究

来源 :计算机技术与发展 | 被引量 : 0次 | 上传用户:foxi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着数码图像的普及,图像盲取证成为时下的研究热点之一,如何识别图像来源是其主要的研究内容。作为图像来源鉴别最关键的阶段,构造鉴别的支持向量机(SVM)分类模型直接影响最终的鉴别率。由于不同核函数以及核参数对分类器性能有着相异的影响,故分析对比了各种核函数,然后选取了细分效果更好的高斯径向基函数作为核函数。针对核参数选择问题,分析了各种核参数寻优算法,并通过实验验证了各个算法的效果,以及最终构造的分类模型的效果。实验结果表明,选用高斯径向基函数作为核函数,利用粒子群算法选出的核参数所构造的分类模型取得了最好
其他文献
目的探索冠心病患者药物洗脱支架(DES)置入后阿司匹林联合P2Y12抑制剂双联抗血小板治疗(DAPT)时程对主要不良心脏事件(MACE)及出血的影响。方法回顾性纳入2008年1月~2009年5
指纹方向场对指纹的奇异点检测、特征提取和匹配、分类识别等至关重要。可靠地估计指纹方向场至今为止仍是一个具有挑战性的问题。现有方法一般先估计初始方向场,再对其进行去噪或者正则化处理。受最新的深度学习技术的启发,提出一种基于回归的端到端指纹方向场估计算法。该算法直接建立指纹图像块的纹理特征与其中心位置的脊线方向之间的映射关系。利用总变差模型分解指纹图像,以去除噪音的干扰;将指纹图像分成若干块,并利用深
在金融时序数据的分析中经常会遇到一些复杂的非线性系统,利用数学方法很难对这些复杂的系统状态方程准确建模。针对目前金融时序的数据分析复杂性和不确定性等问题,将对复杂