论文部分内容阅读
引入非良基集合可以为模态逻辑提供一种新的语义学。这种语义是在集合上解释模态语言,使用集合中作为元素的集合之间的属于关系解释模态词,并在集合中采用命题变元作为本元,从而解释原子命题的真假。在这种新的语义下,从模型构造的角度看可以引入几种非标准的集合运算:不交并、生成子集合、p-态射、树展开等等,证明模态公式在这些运算下的保持或不变结果。利用这些结果还可以证明一些集合类不是模态可定义的。