论文部分内容阅读
This study presents a novel approach using theoretical analysis to assess the risk of rock burst of an island longwall panel that accounts for the coupled behavior of stress distribution and overlying strata movement. The height of destressed zone (HDZ) above the mined panel was first determined based on the strain energy balance in an underground coal mining area. HDZ plays a vital role in accurately determining the amount of different loads being transferred towards the front abutment and panel sides. Subsequently, based on the load transfer mechanisms, a series of formulae were derived for the average static and dynamic stresses in the island pillar through theoretical analysis. Finally, the model was applied to determining the side abutment stress distribution of LW 3112 in the Chaoyang Coal Mine and the results of ground subsidence monitoring were used to verify the predicted model. It can be concluded that the proposed computational model can be successfully applied to determining the safety of mining in island longwall panels.