论文部分内容阅读
在基于机器视觉苹果缺陷识别过程中,因果梗/花萼与缺陷表皮颜色相似,极大地降低苹果表面缺陷识别准确率,提出一种基于决策树支持向量机(DT-SVM)的苹果表面缺陷识别方法。该方法首先采用单阈值法去除背景,其次在R通道中利用Otsu法和连通域标记法提取目标区域(果梗、花萼和缺陷)的颜色、纹理和形状特征,最后利用决策树支持向量机进行识别。以600幅富士苹果图像为例,使用该方法进行缺陷识别,结果表明该方法的平均准确率为97.7%。与1-V-1多分类支持向量机(1-V-1SVM)和AdaBoost分类算法相比,