论文部分内容阅读
在电力系统中,及时有效地识别并排除高压输电线路外破风险隐患对保障电力系统的安全运维具有非常重要的作用。基于深度学习的目标检测技术能够有效识别输电线路安全区域内的工程机械和导线异物等可疑危险目标,降低输电线路的外破风险。针对外破隐患识别问题,基于工业界广泛应用的目标检测算法模型YOLOv3来进行输电线路防外破目标检测,提出了一种改进版的在线困难样本挖掘(I-OHEM)算法,对YOLOv3网络结构进行了改进和优化。结果表明,改进后的算法在保证实时性的要求下,提高了目标检测的准确度。