论文部分内容阅读
This paper uses HJ-1 satellite multi-spectral and multi-temporal data to extract forest vegetation information in the Funiu Mountain region. The S-G filtering algorithm was employed to reconstruct the MODIS EVI(Enhanced Vegetation Index) time-series data for the period of 2000–2013, and these data were correlated with air temperature and precipitation data to explore the responses of forest vegetation to hydrothermal conditions. The results showed that:(1) the Funiu Mountain region has relatively high and increasing forest coverage with an average EVI of 0.48 over the study period, and the EVI first shows a decreasing trend with increased elevation below 200 m, then an increasing trend from 200–1700 m, and finally a decreasing trend above 1700 m. However, obvious differences could be identified in the responses of different forest vegetation types to climate change. Broad-leaf deciduous forest, being the dominant forest type in the region, had the most significant EVI increase.(2) Temperature in the region showed an increasing trend over the 14 years of the study with an anomaly increasing rate of 0.27℃/10a; a fluctuating yet increasing trend could be identified for the precipitation anomaly percentage.(3) Among all vegetation types, the evergreen broad-leaf forest has the closest EVI-temperature correlation, whereas the mixed evergreen and deciduous forest has the weakest. Almost all forest types showed a weak negative EVI-precipitation correlation, except the mixed evergreen and deciduous forest with a weak positive correlation.(4) There is a slight delay in forest vegetation responses to air temperature and precipitation, with half a month only for limited areas of the mixed evergreen and deciduous forest.
This paper uses HJ-1 satellite multi-spectral and multi-temporal data to extract forest vegetation information in the Funiu Mountain region. The SG filtering algorithm was employed to reconstruct the MODIS EVI (Enhanced Vegetation Index) time-series data for the period of 2000-2013, and these data were correlated with air temperature and precipitation data to explore the responses of forest vegetation to hydrothermal conditions. The results showed that: (1) the Funiu Mountain region has relatively high and increasing forest coverage with an average EVI of 0.48 over the study period, and the EVI first shows a decreasing trend with increased elevation below 200 m, then an increasing trend from 200-1700 m, and finally a decreasing trend above 1700 m. However, differences differences could be identified in the responses of different forest vegetation types to climate change. (2) Broad-leaf deciduous forest, being the dominant forest type in the region, had the most significant EVI increase. Temperature in the region showed an increasing trend over the 14 years of the study with an anomaly increasing rate of 0.27 ° C / 10a; a fluctuating yet increasing trend could be identified for the precipitation anomaly percentage. (3) Among all vegetation types, the evergreen broad-leaf forest has the closest EVI-temperature correlation, but the mixed evergreen and deciduous forest has the weakest. 4) There is a slight delay in forest vegetation responses to air temperature and precipitation, with half a month only for limited areas of the mixed evergreen and deciduous forest.