Spectrum Sensing Based on Deep Learning Classification for Cognitive Radios

来源 :中国通信(英文版) | 被引量 : 0次 | 上传用户:lllwan1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Spectrum sensing is a key technol-ogy for cognitive radios.We present spectrum sensing as a classification problem and pro-pose a sensing method based on deep le-ing classification.We normalize the received signal power to overcome the effects of noise power uncertainty.We train the model with as many types of signals as possible as well as noise data to enable the trained network mod-el to adapt to untrained new signals.We also use transfer leing strategies to improve the performance for real-world signals.Extensive experiments are conducted to evaluate the per-formance of this method.The simulation re-sults show that the proposed method performs better than two traditional spectrum sensing methods,i.e.,maximum-minimum eigenvalue ratio-based method and frequency domain entropy-based method.In addition,the ex-perimental results of the new untrained signal types show that our method can adapt to the detection of these new signals.Furthermore,the real-world signal detection experiment results show that the detection performance can be further improved by transfer leing.Finally,experiments under colored noise show that our proposed method has superior detec-tion performance under colored noise,while the traditional methods have a significant per-formance degradation,which further validate the superiority of our method.
其他文献
以风力发电和光伏发电为代表的新能源发电技术的兴起,为解决人类的能源与环境问题带来了新的机遇。与一般的陆上风电场相比,海上风电场由于具有风力资源丰富、发电利用小时数高、不占用土地资源等突出优势,在近20年来获得了迅猛发展,其总装机容量和年新增装机容量都呈现出递增的趋势。然而随着海上风电场装机容量的增加和离岸距离的不断增大,传统海上风电场并网方式的局限性也日趋凸显,研究具有低成本、高效率、高可靠性等特
本文通过对荣华二采区10
期刊
配电网故障直接影响人民正常生产生活,目前单相接地故障占配电网系统故障总数的80%,接地故障产生信号微弱不易被检测,且受系统中性点接地方式、馈出线形式、过渡电阻、故障初始相角等影响,使得单一的故障选线方法实际运行中的选线结果不理想,严重降低了智能配电网的“自愈”能力,研究准确有效的故障选线系统具有非常重要的理论价值和现实意义。论文综合分析了智能配电网的故障特征,借助数学形态学理论、神经网络理论、模糊
The development of communica-tion technologies which support traffic-inten-sive applications presents new challenges in designing a real-time traffic analysis a