论文部分内容阅读
[摘要]数学是一门融理论与实践为一体的学科。教师在注重数学知识传授的同时,还要了解和分析课堂内容,设计恰当的课堂实际操作活动。教学时,要重视课堂实践操作,丰富课堂内容,引导学生在动手实践中进行自主地思考、观察、反思。
[关键词]操作;数学理性;三角形;三边关系
在数学教学中,教师常常是按照传统教学方法来授课,这将导致学生为了应付教师的复习提问而机械地记忆,所学知识很容易被遗忘,而且也没有做到活学活用,在很大程度上禁锢了学生的思维。教师在教学的过程中要结合新课程理念,创设实践操作这一环节,让学生在观察、实验、验证等一系列数学活动中学习。本文就以三角形三边关系这一内容为例,探讨课堂实践操作当中的数学理性。
一、对课堂内容进行课前分析
课堂实践操作活动的设计要以所涉及的课堂内容为前提依据,所以教师首先要对课堂内容进行课前分析。对于三角形三边关系这一内容课堂实践操作活动的设计也是如此。三角形任意两边的和与第三边相比总是较大的,从这一命题中,可以得知如果任意两边的和与第三边相比较大时,则三边就可以围成一个三角形。对三边关系的研究论证完全可以通过对三角形构造的分析来实现,然而完全理论性的论证会使得课堂黯然无味,教师需要独辟蹊径,更有效率地实现教学目标。为了让学生在数学学习中提炼一些方法并获得探究的乐趣,教师需开拓创新,联系课堂的内容,设计实际操作活动,让学生在玩中对旧的认识进行归纳和分析,并以此为基础发现新的认知。
二、以课堂内容为基础,设计课堂实际操作活动
1.提出问题
该课的教学主要是以三角形三边关系作为谈论中心,所以教师应该围绕这一内容提出需要验证的问题,从而引发探究性的实践活动。由于学生普遍认为只要给出三条边就能围成一个三角形,所以教师可以提问:“是否任意三条线就可以组成一个三角形呢?”大部分学生会异口同声地说“可以”,此时教师不要急于给答案,可让学生到接下来的实际操作中去验证自己的回答是否正确。由于学生迫切想要知道自己的答案正确与否,所以就会很认真地进行自主探究验证。
2.设计课堂实际操作活动验证问题
教学进入了由教师的问题引发学生思考,然后再通过操作进行验证这个环节。在这一过程中,教师要不断地设置悬念,让学生有兴趣投入其中。在实践操作进行之前,教师可把学生分为四组,分别用长短不同的学具小棒自由摆放,使之围成一个三角形。在操作的过程中,教师要以指导者的身份走入学生当中。通过实践操作结果显示,第一组小组成功地围成了一个三角形,三根小棒的长度分别为两厘米、四厘米、五厘米;第二组也用三根长度相等的小棒围成了一个三角形;第三组用长度分别为两厘米、四厘米、七厘米的小棒来围三角形,却怎么也无法围成;第四组分别用三厘米、四厘米、七厘米的小棒去围,结果也与第三组的情况一样。面对得出的不同结果,学生会产生疑惑而急于想知道原因。这时候教师再将这四组学生聚集在一起,对操作结果进行讨论,由此得出三角形三边的关系,再验证三边有怎样的关系才能组成一个三角形。
3.参与讨论并讲解
学生虽然通过实践操作对自己的答案进行了验证,但是要打破他们的固有思维需要教师透彻的讲解过程。教师需将学生聚集在一起,让大家对结果进行讨论。由于是要分析三角形三边的关系,所以教师首先要让学生经过测量了解自己小组三条线段的特点,经过对四组组成三角形线段的对比,可以发现第一、二组组成三角形的线段的任意两条的和都大于第三边,而第三、四组不符合这一条件,所以没能围成三角形。在讨论完之后,教师要对其进行详细的讲解,让学生在实践与理论的交融下更透彻地了掌握知识。
由于三角形三边关系这一内容的教学针对的教学对象是小学生,小学生对三角形都有感官上的认识,这种认识作为基础,他们就会在脑海中形成思维定势,认为只要给出三个边就能组成一个三角形。所以,教师在课堂教学中应该打破学生这种认识,循序渐进,让他们通过一系列的课堂实践来验证自己的思考。
责任编辑 满令怡
[关键词]操作;数学理性;三角形;三边关系
在数学教学中,教师常常是按照传统教学方法来授课,这将导致学生为了应付教师的复习提问而机械地记忆,所学知识很容易被遗忘,而且也没有做到活学活用,在很大程度上禁锢了学生的思维。教师在教学的过程中要结合新课程理念,创设实践操作这一环节,让学生在观察、实验、验证等一系列数学活动中学习。本文就以三角形三边关系这一内容为例,探讨课堂实践操作当中的数学理性。
一、对课堂内容进行课前分析
课堂实践操作活动的设计要以所涉及的课堂内容为前提依据,所以教师首先要对课堂内容进行课前分析。对于三角形三边关系这一内容课堂实践操作活动的设计也是如此。三角形任意两边的和与第三边相比总是较大的,从这一命题中,可以得知如果任意两边的和与第三边相比较大时,则三边就可以围成一个三角形。对三边关系的研究论证完全可以通过对三角形构造的分析来实现,然而完全理论性的论证会使得课堂黯然无味,教师需要独辟蹊径,更有效率地实现教学目标。为了让学生在数学学习中提炼一些方法并获得探究的乐趣,教师需开拓创新,联系课堂的内容,设计实际操作活动,让学生在玩中对旧的认识进行归纳和分析,并以此为基础发现新的认知。
二、以课堂内容为基础,设计课堂实际操作活动
1.提出问题
该课的教学主要是以三角形三边关系作为谈论中心,所以教师应该围绕这一内容提出需要验证的问题,从而引发探究性的实践活动。由于学生普遍认为只要给出三条边就能围成一个三角形,所以教师可以提问:“是否任意三条线就可以组成一个三角形呢?”大部分学生会异口同声地说“可以”,此时教师不要急于给答案,可让学生到接下来的实际操作中去验证自己的回答是否正确。由于学生迫切想要知道自己的答案正确与否,所以就会很认真地进行自主探究验证。
2.设计课堂实际操作活动验证问题
教学进入了由教师的问题引发学生思考,然后再通过操作进行验证这个环节。在这一过程中,教师要不断地设置悬念,让学生有兴趣投入其中。在实践操作进行之前,教师可把学生分为四组,分别用长短不同的学具小棒自由摆放,使之围成一个三角形。在操作的过程中,教师要以指导者的身份走入学生当中。通过实践操作结果显示,第一组小组成功地围成了一个三角形,三根小棒的长度分别为两厘米、四厘米、五厘米;第二组也用三根长度相等的小棒围成了一个三角形;第三组用长度分别为两厘米、四厘米、七厘米的小棒来围三角形,却怎么也无法围成;第四组分别用三厘米、四厘米、七厘米的小棒去围,结果也与第三组的情况一样。面对得出的不同结果,学生会产生疑惑而急于想知道原因。这时候教师再将这四组学生聚集在一起,对操作结果进行讨论,由此得出三角形三边的关系,再验证三边有怎样的关系才能组成一个三角形。
3.参与讨论并讲解
学生虽然通过实践操作对自己的答案进行了验证,但是要打破他们的固有思维需要教师透彻的讲解过程。教师需将学生聚集在一起,让大家对结果进行讨论。由于是要分析三角形三边的关系,所以教师首先要让学生经过测量了解自己小组三条线段的特点,经过对四组组成三角形线段的对比,可以发现第一、二组组成三角形的线段的任意两条的和都大于第三边,而第三、四组不符合这一条件,所以没能围成三角形。在讨论完之后,教师要对其进行详细的讲解,让学生在实践与理论的交融下更透彻地了掌握知识。
由于三角形三边关系这一内容的教学针对的教学对象是小学生,小学生对三角形都有感官上的认识,这种认识作为基础,他们就会在脑海中形成思维定势,认为只要给出三个边就能组成一个三角形。所以,教师在课堂教学中应该打破学生这种认识,循序渐进,让他们通过一系列的课堂实践来验证自己的思考。
责任编辑 满令怡