论文部分内容阅读
甲状腺结节是一种常见的多发病,超声技术是该疾病首选的检查方法。在超声图像中提取区分甲状腺结节良恶性的纹理特征并进行判别具有广阔的临床应用前景。双树复小波变换(Dual-tree complex wavelet transform,DT-CWT)和Gabor小波是纹理特征提取的常用方法。本文提出一种基于多尺度的DT-CWT和Gabor特征融合的甲状腺结节识别方法。该方法首先通过高斯金字塔将甲状腺超声图像分解到多尺度空间,然后提取图像的DT-CWT和Gabor的多尺度特征,最后实现特征融合。通过应用支持向量机