区域性红色历史文化资源的教育价值与实践路径——以胶东地区为例

来源 :中学历史教学参考 | 被引量 : 0次 | 上传用户:amwaydog
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
<正>1994年中共中央宣传部颁布的《爱国主义教育实施纲要》明确指出,各类学校应"把历史事件、英烈事迹、建设成就编入党课、团课……贯穿到思想政治教育和课堂教学中去"。2004年中宣部和教育部颁布的《中小学开展弘扬和培育民族精神教育实施纲要》中指出:"中小学开展弘扬和培育民族精神教育要以爱国主义教育为核心,以中华传统美德和革命传统教育为重点。"红色历史文化既有主流性、积极性、独特性等特点,也有丰厚的历史积淀和教育价值,是对学生进行爱国主义教育和革命传统教育,对学生进行红色"底色教育",传承红色基因的重要资源。
其他文献
有向图是图论的一个重要分支,有向图的哈密尔顿性是图论的基本问题,在现实生活中有着非常广泛的应用.半个多世纪以来,人们对哈密尔顿问题进行了深入的研究且取得了很多重要的成果.本文主要对强连通有向图和平衡二部有向图的哈密尔顿性进行研究.本文共分为四章.第一章介绍了本文涉及到的基本概念,并给出了所研究问题的研究现状.第二章研究了强连通有向图存在哈密尔顿圈的被控制对的度条件.1996年,Bang-Jense
在本文中,我们主要讨论了梯形区域上具有混合边界的一维波动方程的内点能观性和梯形区域上具有混合边界的薛定谔方程的边界能观性。本文分为三章。第一章,主要简述了一维波动方程能观性的一些问题,并给出了本文主要研究的问题。第二章,考虑在梯形区域Ω={(x,t)∈R2:0 ≤x≤ s(t),t≥ t0}s(t)=lt,t≥t0上的如下系统:(?)其中(g,f)∈HR1[0,lt0]×L2[0,lt0]是任意给
本文主要应用变分法和临界点理论研究了几类零质量Kirchhoff型方程非平凡解的存在性和多重性.主要内容如下:第一章主要介绍Kirchhoff型方程的研究背景与意义,以及研究现状.第二章主要给出本文将会用到的一些基本函数空间和性质,以及一些抽象临界点定理.第三章研究一类拟临界零质量Kirchhoff型方程基态解的存在性.在适当的条件下,利用变分法得到了该方程基态解的两个存在性结论.第四章研究了一类
竞赛图是一类重要的有向图,关于竞赛图已经有了许多结论.本文研究了竞赛图的一种推广图——准传递定向图,得到了准传递定向图在不同出度下Seymour点的个数;给出准传递定向图中点不交圈的个数及长度;计算得到准传递定向图上直径的界.本文共分为四章.第一章介绍有向图的基本概念,准传递定向图的定义、结构和相关结论以及本文内容的安排.第二章在准传递定向图上探究Seymour二次邻域猜想,主要得到:任何准传递定
美国生物学家Cohen在研究生态系统的食物网时提出了竞争图的概念,因其在理论和应用上都有重要的研究价值,从而竞争图成为图论研究中的热门话题.模糊有向图用来体现不清晰、不确定和界限模糊的事物之间的竞争关系,由于现实生活中竞争关系的复杂性和多样性,模糊竞争图吸引了大量科研工作者的关注.随后众多的模糊竞争图的概念及其应用被相继提出.本文将模糊竞争图中的直觉模糊竞争图、双极模糊竞争图、双极单值中智竞争图和
有向图在图论中占有很高的地位,而其中竞赛图是最重要的一类图.所以,竞赛图受到了大量科研工作者的关注.泛圈问题是图论研究的热点问题,它包括很多方面,比如顶点泛圈,弧泛圈,外弧泛圈点等.而其中弧泛圈问题又是一个重要的问题,越来越多的学者们也对弧泛圈问题进行了深入的研究.如果对每个2≤k≤|V(D)|-1,有向图D中的弧uv都有一条从v到u的长为k的路,则称弧uv是泛圈的.如果对每个2 ≤k≤|V(D)
列奥纳多·达·芬奇作为文艺复兴时期三杰之首,除了众所周知的绘画和雕塑之外,他在机械、音乐、文学、医学、解剖学等方面也有很大的成就,他留下了许多令我们惊叹不已的成就。达·芬奇是文艺复兴时期绘画技术与绘画理论的集大成者,尤其是他在绘画技法研究上更是推动了欧洲绘画的发展。透视法研究是达·芬奇绘画技法中最重要的一部分。达·芬奇将透视法在原有的线性透视法的基础上,通过观察和实验又提出了新的透视法概念,形成了
特征值估计和Harnack不等式是随机分析和几何分析中经典研究课题,近年来图上的几何与分析受到许多学者的关注与研究,其中如何在图上合理地定义曲率是一个首要问题,借助Bakry-Emery的平方场以及最优传输的思想,在这个方向上有了很大进展,本文在这样的一个背景下研究了 Laplace和p-Laplace算子的特征值估计以及相关Harnack不等式问题.具体进展如下:(1)在满足指数曲率维数CDE(
梯度估计是随机分析与几何分析中重要的研究课题.本文主要研究在紧致黎曼流形上,三种p-Laplace型非线性扩散方程的Li-Yau型梯度估计和Hamilton型梯度估计.作为其应用,进一步推导出相对应的Harnack不等式.具体研究内容为:(1)考虑紧致黎曼流形上的非线性反应扩散方程(NRDE)ut=Δpuγ+cuq,其中p>1,γ和q是满足一定条件的常数.我们首先引入p-Laplacian的线性化
控制数问题一直是图论领域的研究热点.已有结论表明图的控制数问题是一类NP-完备问题,所以探究出图的控制数的精确值或控制数较好的上下界具有重大的理论意义.本文结合经典的控制理论和不同的生活背景将无向图的Roman k-控制数,Italian控制数,全k-控制数和全局全k-控制数推广到有向图中,给出了较好的上下界,研究了几类控制参数之间的相互关系,并且在一些特殊有向图上计算出它们的精确值.第一章,介绍