论文部分内容阅读
基本蚁群算法的地磁匹配算法易陷入局部最优且算法鲁棒性、稳定性较低,针对这些不足提出一种改进的地磁匹配导航算法.新算法改进了蚁群算法的信息素更新策略并引入参数自适应调整来避免算法陷入局部最优;同时采用带有记忆功能和自适应选择初始温度的模拟退火(SA)算法,无论算法是否陷入局部最优时通过在本次迭代最优路径上强行随机扰动以实现继续寻优.实验结果表明,新算法比传统蚁群优化(ACO)算法有更强的鲁棒性和稳定性.