论文部分内容阅读
首先将Cauchy矩阵方法应用于非自治链系统,得到非自治Nijhoff-Quispel-Capel(NQC)方程及其精确解.这些解可以通过非自治离散色散关系和一个一般的带有任意常系数矩阵K的Sylvester方程来描述.然后建立了非自治NQC方程与非自治Adler—Bobenko-Suris(ABS)链方程中Q3的联系,描述了非自治Q3方程与非自治ABS链中Q2,Q1,H3,H2,和H1方程之间的退化关系.这些联系与自治情形相似.最后利用方程间的退化关系,从非自治Q3方程的解得到了非自治Q2,Q1,H3,