论文部分内容阅读
随着化石能源约束的日趋严苛,风能开发已然成为一种趋势。由于风的不确定性、间歇性以及风电场内各机组间尾流的影响,使得风力发电机不能像常规发电机组那样根据对电能的需求来确定发电。风电功率的随机波动被认为是对电网带来不利影响的主要因素。研究风电功率的波动特性尤为重要。本文基于某电厂的20台风电机30天内的风电功率实测数据,通过对图形及参数的研究,得到最优的概率分布模型为t-location scale分布,并针对结果用拟合指标作出了检验。最后利用小波神经网络对功率做有效的预测分析。