论文部分内容阅读
传统的主成分分析(principal component analysis,PCA)算法选取包含大部分方差信息的成分作为主元,并将其应用到过程监控中。但是故障信息不一定会投影到方差较大的成分上,使用方差贡献度挑选主元会导致严重的信息丢失和监控效果的恶化。因此使用ReliefF-PCA算法,其中ReliefF算法从故障角度出发,挑选出在区分正常样本和故障样本上权重更高,效果相对更好的成分作为主元。这样挑选出的主元避免了传统PCA算法在主元挑选过程中出现的主观性、盲目性以及重要信息的丢失。ReliefF-PC