【摘 要】
:
本文主要研究了全纯函数分担一个非零多项式的唯一性问题,并且得到了:若f,g为2个非常数的超越整函数,n,k,l为3个正整数且满足5l>4n+5k+7.如果[L(f)](k)与[L(g)](k)IM分担次数
论文部分内容阅读
本文主要研究了全纯函数分担一个非零多项式的唯一性问题,并且得到了:若f,g为2个非常数的超越整函数,n,k,l为3个正整数且满足5l>4n+5k+7.如果[L(f)](k)与[L(g)](k)IM分担次数小于或等于5的非零多项式P(z),则或者f(z)=λ1eλQ(z)+c,g(z) =λ2e-λQ+(z),或者f(z)与g(z)满足代数方程R(f,g)≡0,这里Q(z)=fz0P(z)dz,λ1,λ2,λ及c为4个常数,且满足等式(λ1λ2)n(nλ)2 =-1,并且R(ω1,w2)=L(ω1)-L(w2).此外,就[L(f)](k)与[L(g)](k)IM或CM分担不动点的情形也进行了详细的研究.
其他文献
In this paper, we improve the algorithm and rewrite the function make-Pairing for computing a Gorni-Zampieri pair of a homogeneous polynomial map. As an applica
Let X denote a finite or infinite dimensional Lie algebra of Cartan type W, S, H or K over a field of characteristic p≥3. In this paper it is proved that certa
首先基于共轭梯度法的共轭条件和下降性,提出了一类充分下降的谱共轭梯度法.该方法将经典共轭梯度法中搜索方向由原来的只满足一个共轭条件改变为同时满足一个共轭条件和一个
研究了不变反凸模糊集及其相关性质,推广了有关文献中反凸模糊集的概念和相关结论.首先,通过将不变凸集的思想应用到反凸模糊集,定义了一种新的广义反凸模糊集——不变反凸模
本文研究了区间变时滞广义系统的时滞依赖稳定性问题,即寻求稳定判据保证广义系统的正则性、无脉冲性和渐近稳定性.通过利用一个新的Lyapunov-Krasovskii泛函和自由权矩阵方
针对来自广义指数(GE)分布的记录值样本,研究了广义指数分布的参数的估计问题.首先给出了参数的最大似然估计;在参数的共轭先验分布为贝塔先验分布,损失函数为平方误差损失和L
本文考虑不用导数信息求解无约束优化问题的方法.对于求解无约束优化问题的带有离散步的标准Hooke-Jeeves方法,目标函数值有可能在其加速步中增大.本文修正了标准HJMDS的加速
利用亚纯函数的Nevanlinna值分布理论方法,讨论了fm(f(k))n-(a)(z)关于值分布的一个结果,得到了更为一般的结论.设f是复平面上的超越亚纯函数,(a)(z)是f的一个不恒等于零的小
设G为有限群,o1(G)表示G中最高阶元素的阶.用极少的数量刻画有限单群是单群刻画领域中一个有趣的课题.本文只用群的阶及最高阶元素的阶刻画了单K3-群L3(3)和U3(3),即证明了:
本文讨论了一类具有时变时滞的驱动-响应网络的外同步问题.以线性矩阵不等式(LMI)和Lyapunov泛函方法,获得了该两个复杂动态网络间达到外同步的判据.即当系统参数满足下列条