论文部分内容阅读
采用数码相机获取水稻冠层的图像,提取图像中红(R)、绿(G)、蓝(B)三通道的色值,依据水稻冠层在可见光范围内的光谱反射规律,设置3个简单的判断条件,以决策树的形式,逐步剔除图像中的非冠层部分,从而达到识别水稻冠层的目的。与人工目视解译的结果进行对比验证,该方法的冠层识别准确率为91.91%,分别比支持向量机方法、最大似然法和神经网络方法高1.56、5.56和15.65个百分点;合计准确率为90.58%,Kappa系数为0.79,其数值低于支持向量机方法(91.55%,0.81),但均高于最大似然法