论文部分内容阅读
利用稀疏分量的直线聚类性,提出了欠定盲源分离中估计混合矩阵的一种方法。该方法通过构造比率矩阵对观测信号进行分选,剔除了源信号频谱重叠的部分,然后利用鲁棒竞争的聚类学习算法获得对混合矩阵的精确估计,解决了源信号在频域不充分稀疏的条件下准确估计混合矩阵的问题。在估计出混合矩阵的基础上,利用最短路径法分离出源信号。由仿真结果可以看出,与传统的K均值估计混合矩阵的方法相比,方法具有更好的鲁棒性。