论文部分内容阅读
基于粒子滤波的目标跟踪,跟踪的成功率和精度与目标运动速度和算法的粒子数密切相关.较大的粒子数能够跟踪速度更快的目标,同时提高跟踪的精度,但会降低算法的实时性.为了解决这个问题,提出一种两阶段混合粒子滤波算法,在第一阶段中,利用少量粒子基于距离角度模型对目标的位置进行粗略估计.在第二阶段中,利用均值偏移算法对目标位置进行精确估计,同时利用粒子滤波对均值偏移的窗口进行自适应调整.实验表明,提出的两阶段混合粒子滤波算法,不仅能够实时地跟踪尺寸变化的目标,而且能够跟踪运动速度快的目标.