论文部分内容阅读
城市可见光图像中高大的建筑和树木造成的阴影及部分树木区域出现的颜色失真问题使得传统的颜色量化方法不能准确描述地物谱差异,最终导致分类精度下降。针对可见光图像中的阴影和颜色失真问题提出了一种改进办法:第一阶段针对阴影导致的被掩盖区域谱信息缺失问题,对阴影区域进行采样、分析,通过双阈值提取阴影区域并以面向对象分类方法获得绿色区域阴影。第二阶段通过融合树木区域在多源信息[激光雷达强度、多次回波的数字表面模型(DSM)]中的差异特征,剔除冗余,获取准确的树木区域,弥补颜色失真使得树木区域提取不完全的缺陷。实验结果与人工获取的真实数据对比显示,该方法与传统的Dempster-Shafer(D-S)证据理论融合方法相比,分类精度有了明显的提高。