论文部分内容阅读
本文将多层神经网络引入跟踪式卡尔曼滤波器中,提高了估计的精确度。以前的跟踪式卡尔曼滤波器的估计精度与目标的运动状态有关,当目标的运动不能够用线性状态空间模型描述时,其估计精度将要下降。而多层神经网络的引入,改善了这一不足。多层神经网络经过训练以后,能够对卡尔曼滤波器的结果进行修正。仿真结果表明,由于多层神经网络的应用,估计精度显著提高。