论文部分内容阅读
对定义在一系列无方向点集上的3D形状模型提出一种新的数字水印方案。首先应用神经网络的方法对点集模型进行学习,根据在学习过程中神经网格法线的变化情况,找到特征点。最后对已加水印的点集模型应用不同的攻击,比如剪切、(模拟)简化和附加随在特征点附近嵌入水印信息机噪声之后,结果显示通过这种方案嵌入的水印,在某种程度上仍可以被检测到。