论文部分内容阅读
摘要:K-prototypes算法是处理混合属性数据的主要聚类算法,但是存在对初值敏感、参数依赖和易受“噪声”干扰等问题。为了克服以上缺点,该文对K-prototypes算法的初始中心点选择进行了研究与分析,提出了一种基于近邻法的初始中心点选择策略对算法进行改进,算法先利用近邻法获得初始中心点集和k值,然后进行K-prototypes运算,最后加入识别异常数据点的规则。改进后的算法成功解决了传统K-prototypes算法的缺陷,而且具有更好的分类精度和稳定性。经实验证明,改进算法是正确和有效的,明显优于传统的K-prototypes算法。
全文查看链接
当xij≠zaj时,δ(xij,zaj)=1;
全文查看链接
将传统算法运行10次,通过打乱数据集的各个数据位置,反复仿真得出以下聚类结果。
全文查看链接