论文部分内容阅读
针对光照变化、背景噪声等复杂环境对手势识别的影响,提出了一种基于YCb Cr空间肤色分割去除背景结合卷积神经网络进行手势识别方法。首先根据人体肤色在YCb Cr颜色空间中的聚类效果,采用基于椭圆模型的肤色检测方法进行手势分割;然后对分割后的手势图像提取骨架与边缘相融合的手势特征图;再通过深层次的Alex Net卷积神经网络结构,对经过融合的手势特征图进行识别。实验结果表明,针对复杂的背景环境,该算法具有较强的鲁棒性,在不同数据集下对手势的平均识别率提升了4%,可以达到99.93%。