论文部分内容阅读
针对某些非线性常微分方程,提出一种算子分裂半隐Runge-Kutta方法,对于非线性部分采用显式计算,对于刚性强的线性部分采用隐式处理.给出了格式的推导,分析了绝对稳定性,并证明了半隐二阶格式的收敛性.相比于显式Runge-Kutta法,半隐格式计算量相近,但改进了稳定性,数值结果显示了方法的合理性和有效性.最后,将算子分裂半隐Runge-Kutta方法应用于数值求解Zakharov偏微分方程组.