论文部分内容阅读
高锰TWIP钢的高强度、高塑性和高能量吸收能力与其堆垛层错能有关。TWIP效应对应的层错能上、下限值仍未统一,尤其是TWIP向MBIP(微带诱导塑性)转变的临界判据仍有待于深入分析。XRD、TEM和EAM是测定奥氏体层错能最常用的实验方法。同一TWIP钢的层错能及其变化规律存在实验方法的相关性。正规和亚正规溶液模型、Bragg-Williams模型和双亚点阵模型是计算高锰钢层错能的常见模型。对同一TWIP钢来说,不同模型的预测值并不相同,且与实测值也存在差异。铃木效应引起层错能随间隙原子浓度非线性变化,这在计算时是不能忽略的。规范实验方法、提高设备精度和完善热力学模型及其数据库有助于获得准确可靠的层错能值。
The high strength, high ductility and high energy absorption of high manganese TWIP steel are related to its stacking fault energy. The upper and lower limit values of the stratigraphic fault corresponding to the TWIP effect have not been unified yet. In particular, the critical criterion for the transition from TWIP to MBIP remains to be further analyzed. XRD, TEM and EAM are the most commonly used experimental methods for the determination of the layer fault energy of austenite. The same TWIP steel stratified fault energy and its variation exist experimental methods of correlation. Regular and sub-normal solution model, Bragg-Williams model and double sub-lattice model is to calculate the high manganese steel layer fault energy common model. For the same TWIP steel, the predicted value of different models are not the same, and the measured value is also different. The Suzuki effect causes the stacking fault to vary non-linearly with the interstitial atom concentration, which can not be neglected in the calculation. Standardizing experimental methods, improving equipment accuracy, and refining thermodynamic models and their databases help to obtain accurate and reliable fault energy values.