论文部分内容阅读
TLD(Tracking-Learning-Detection)算法是近期受到广泛关注的一种长时间视觉跟踪算法.为提高该算法的运行速度,一种ATLD(Accelerated TLD)算法被提出,对原始TLD算法做了两方面改进:在检测模块引入基于灰色预测模型的目标位置估计和检测区域设置;运用基于NCC(Normalized Cross Correlation)距离的图像检索方法管理正负样本集.并在此基础上实现了多目标跟踪.通过实验比较了ATLD算法、原始TLD算法及两种近期改进的TLD算法.实验结果表明:A