论文部分内容阅读
为了获得更好的人脸特征,有效地提高算法的识别率,提出了一种联合Gabor特征与投影字典对学习的人脸识别算法G-DPL。算法使用Gabor小波提取人脸图像的局部特征,对特征向量使用PCA与LDA的方法进行降维。将投影字典对学习算法与降维后的Gabor特征融合,然后进行分类识别。提出的G-DPL算法在ORL库上整体识别率达到99.00%,特征维数为39维。在AR库上识别率达到96.14%,特征维数为99维。提出的G-DPL算法在占用较少空间的同时能够获得更高的识别率,对实际应用具有一定的参考价值。