论文部分内容阅读
随着分布式故障测距技术的快速发展,输电线路故障行波数据量呈现指数性增长,传统的短路故障辨识研究方法效率低下。为此,以典型的雷击故障(绕击和反击)和非雷击故障图像库为基础,提出一种基于深度学习的短路故障辨识方法,对行波数据的时域信息进行特征识别,以波头和波尾为输入量,构建输电线路短路故障辨识模型。该方法为电力公司输电线路运维提供了理论依据。