论文部分内容阅读
摘要: 证明三维湍流Richardson扩散方程中的变系数拉普拉斯算子是基本解为r-7/3的一个势算子,并称其为Richardson势算子,其中,r是空间中两点的欧几里得距离.基于Kolmogorov标度律和湍流快扩散(superdiffusion)理论,运用隐式微积分方程建模方法提出雷诺方程中的Richardson势算子湍流涡黏性本构方程.
关键词: 湍流; 涡黏性本构; Richardson扩散方程; 基本解; Richardson势算子; 隐式微积分方程建模
中图分类号: O39; O241.8文献标志码: A
Abstract: It is verified that the Laplacian operator with varying coefficient in the 3D turbulence Richardson diffusion equation is a potential operator having the fundamental solution r-7/3, which is called the Richardson potential operator and where r is the Euclidean distance between two points. Based on the Kolmogorov scaling law and turbulence superdiffusion theory, a Richardson potential operator equation of turbulence eddy viscosity constitutive relationship in the Reynolds equation is proposed by the implicit calculus equation modeling approach.
Key words: turbulence; eddy viscosity constitutive relationship; Richardson diffusion equation; fundamental solution; Richardson potential operator; implicit calculus equation modeling
3讨论
隐式微积分建模方法将微积分建模与统计模型深刻紧密地结合起来,揭示确定性模型与随机模型的内在联系.本文利用隐式微积分建模方法发展的雷诺湍流模型,是一个统计意义清晰的确定性物理模型.
Richardson势算子基本解r-7/3与湍流的Kolmogorov标度率有数学、力学上的清晰联系.另一方面,其也许与湍流的分形结构有关,深入分析这个问题是下一步工作的重点.
类似于文献[2]的方法,也可以用Richardson势算子构造间歇性湍流的统计方程Pt-γΔRP-υΔP=0(11)式中:P为概率密度函数.式(11)包含涡尺度和分子尺度的黏性扩散行为,可刻画湍流的多尺度行为.
文献[2]提出的分数阶拉普拉斯算子涡黏性本构模型,本质上假设湍流涡的扩散服从Lévy稳态分布[3],但是湍流实验数据更接近伸展高斯分布[6].本文引入的Richardson势算子湍流涡黏性本构模型在统计上反映湍流的伸展高斯分布特征.此外,Lévy稳态分布的2阶矩无穷大[3],而伸展高斯分布没有这个问题.有关这两个模型的数值验证是一个非常重要的工作,可以考虑从槽道湍流问题入手.
参考文献:
[1]BATCHELOR G K. Theory of homogeneous turbulence[M]. Cambridge: Cambridge University Press, 1953.
[2]CHEN W. A speculative study of 2/3order fractional Laplacian modeling of turbulence: Some thoughts and conjectures[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2006, 16(2): 023126. DOI: 10.1063/1.2208452.
[3]SAICHEV A, ZASLAVSKY G M. Fractional kinetic equations: Solutions and applications[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 1997, 7(4): 753764. DOI: 10.1063/1.166272.
[4]JULLIEN M C, PARET J, TABELING P. Richardson pair dispersion in twodimensional turbulence[J]. Physical Review Letters, 1999, 82(14): 28722875. DOI: 10.1103/PhysRevLett.82.2872.
[5]MAJDA A J, KRAMER P R. Simplified models for turbulent diffusion: Theory, numerical modeling, and physical phenomena[J]. Physics Reports, 1999, 314(45): 237574.
[6]PORTA A L, VOTH G A, CRAWFORD A M, et al. Fluid particle accelerations in fully developed turbulence[J]. Nature, 2001, 409: 10171019.
[7]SOKOLOV I M, KLAFTER J, BLUMEN A. Ballistic versus diffusive pair dispersion in the Richardson regime[J]. Physical Review E, 2000, 61(3): 27172722. DOI:10.1103/PhysRevE.61.2717.
[8]陈文.复杂科学与工程问题仿真的隐式微积分建模[J]. 计算机辅助工程, 2014, 23(5): 16.
CHEN W. Implicit calculus modeling for simulating complex scientific and engineering problems[J]. Computer Aided Engineering, 2014, 23(5): 16. DOI: 10.13340/j.cae.2014.05.001.
(编辑于杰)
关键词: 湍流; 涡黏性本构; Richardson扩散方程; 基本解; Richardson势算子; 隐式微积分方程建模
中图分类号: O39; O241.8文献标志码: A
Abstract: It is verified that the Laplacian operator with varying coefficient in the 3D turbulence Richardson diffusion equation is a potential operator having the fundamental solution r-7/3, which is called the Richardson potential operator and where r is the Euclidean distance between two points. Based on the Kolmogorov scaling law and turbulence superdiffusion theory, a Richardson potential operator equation of turbulence eddy viscosity constitutive relationship in the Reynolds equation is proposed by the implicit calculus equation modeling approach.
Key words: turbulence; eddy viscosity constitutive relationship; Richardson diffusion equation; fundamental solution; Richardson potential operator; implicit calculus equation modeling
3讨论
隐式微积分建模方法将微积分建模与统计模型深刻紧密地结合起来,揭示确定性模型与随机模型的内在联系.本文利用隐式微积分建模方法发展的雷诺湍流模型,是一个统计意义清晰的确定性物理模型.
Richardson势算子基本解r-7/3与湍流的Kolmogorov标度率有数学、力学上的清晰联系.另一方面,其也许与湍流的分形结构有关,深入分析这个问题是下一步工作的重点.
类似于文献[2]的方法,也可以用Richardson势算子构造间歇性湍流的统计方程Pt-γΔRP-υΔP=0(11)式中:P为概率密度函数.式(11)包含涡尺度和分子尺度的黏性扩散行为,可刻画湍流的多尺度行为.
文献[2]提出的分数阶拉普拉斯算子涡黏性本构模型,本质上假设湍流涡的扩散服从Lévy稳态分布[3],但是湍流实验数据更接近伸展高斯分布[6].本文引入的Richardson势算子湍流涡黏性本构模型在统计上反映湍流的伸展高斯分布特征.此外,Lévy稳态分布的2阶矩无穷大[3],而伸展高斯分布没有这个问题.有关这两个模型的数值验证是一个非常重要的工作,可以考虑从槽道湍流问题入手.
参考文献:
[1]BATCHELOR G K. Theory of homogeneous turbulence[M]. Cambridge: Cambridge University Press, 1953.
[2]CHEN W. A speculative study of 2/3order fractional Laplacian modeling of turbulence: Some thoughts and conjectures[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2006, 16(2): 023126. DOI: 10.1063/1.2208452.
[3]SAICHEV A, ZASLAVSKY G M. Fractional kinetic equations: Solutions and applications[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 1997, 7(4): 753764. DOI: 10.1063/1.166272.
[4]JULLIEN M C, PARET J, TABELING P. Richardson pair dispersion in twodimensional turbulence[J]. Physical Review Letters, 1999, 82(14): 28722875. DOI: 10.1103/PhysRevLett.82.2872.
[5]MAJDA A J, KRAMER P R. Simplified models for turbulent diffusion: Theory, numerical modeling, and physical phenomena[J]. Physics Reports, 1999, 314(45): 237574.
[6]PORTA A L, VOTH G A, CRAWFORD A M, et al. Fluid particle accelerations in fully developed turbulence[J]. Nature, 2001, 409: 10171019.
[7]SOKOLOV I M, KLAFTER J, BLUMEN A. Ballistic versus diffusive pair dispersion in the Richardson regime[J]. Physical Review E, 2000, 61(3): 27172722. DOI:10.1103/PhysRevE.61.2717.
[8]陈文.复杂科学与工程问题仿真的隐式微积分建模[J]. 计算机辅助工程, 2014, 23(5): 16.
CHEN W. Implicit calculus modeling for simulating complex scientific and engineering problems[J]. Computer Aided Engineering, 2014, 23(5): 16. DOI: 10.13340/j.cae.2014.05.001.
(编辑于杰)