论文部分内容阅读
在人机交互过程中,理解人类的情绪是计算机和人进行交流必备的技能之一。最能表达人类情绪的就是面部表情。设计任何现实情景中的人机界面,面部表情识别是必不可少的。在本文中,我们提出了交互式计算环境中的一种新的实时面部表情识别框架。文章对这个领域的研究主要有两大贡献:第一,提出了一种新的网络结构和基于AdaBoost的嵌入式HMM的参数学习算法。第二,将这种优化的嵌入式HMM用于实时面部表情识别。本文中,嵌入式HMM把二维离散余弦变形后的系数作为观测向量,这和以前利用像素深度来构建观测向量的嵌入式HMM方法