论文部分内容阅读
尺度不变特征变换(SIFT)算法提取的人脸特征具有一定的鲁棒性,但存在数据维数过高和计算过于复杂的问题。为此,提出一种基于直接局部保持投影-尺度不变特征变换(DLPP-SIFT)的人脸识别算法。首先采用SIFT算法进行特征提取,然后结合子空间方法局部保持投影(LPP)进行降维,利用直接对角化方法求取特征矩阵,解决了LPP的奇异值问题。在ORL和FERET人脸库的实验结果表明,DLPP-SIFT算法可显著减少计算复杂度和特征匹配时间,与SIFT、主成分分析(PCA)-SIFT、LPP-SIFT相比,具