论文部分内容阅读
随着深度学习算法在语音和图像等领域中的成功运用,能够有效提取目标特征并做出最优决策的神经网络再次得到了广泛的关注.然而随着数据量的增加和识别精度需求的提升,神经网络模型的复杂度不断提高,因此采用面向特定领域的专用硬件加速器是高效运行神经网络的有效途径.然而如何根据网络规模设计高能效的加速器,以及基于有限硬件资源如何提高网络性能并最大化资源利用率是当今体系结构领域研究的重要问题.为此,提出基于计算特征的神经网络分析和优化方法,基于“层”的粒度解析典型神经网络模型并提取模型通用表达,根据通用表达式和基本操作属