论文部分内容阅读
结合非下采样剪切波变换的时频分离优良特性,提出了一种基于卷积神经网络(convolutional neural networks,CNN)的非下采样剪切波变换(non-subsampled shearlet transform,NSST)域图像融合算法.首先对源图像进行NSST分解,其次对分解的低频系数进行基于CNN的融合策略.最后对分解的高频系数进行基于向导滤波(guided filtering,GF)的改进加权的拉普拉斯能量和(improved weighted sum of Laplace e