论文部分内容阅读
将模糊神经网络理论和算法应用于负性光刻胶(SU-8)加工高分辨率和高深宽比微结构的工艺研究,在正交试验的基础上对网络进行训练,建立了光刻图形质量与前烘时间、前烘温度、曝光量、后烘时间之间的预测模型。该模型采用五层前向模糊神经网络,学习算法为梯度下降法。进行了实验,实验结果表明,前烘温度与前烘时间对光刻质量影响最大。对120~340μm厚的光刻胶,前烘温度取95℃,前烘时间100min时,图形的相对线宽差最小;超声搅拌能缩短显影时间,显著改善图形质量,试验结果与计算结果十分吻合。将模糊神经网络应用于UV-L