论文部分内容阅读
为准确预测蔬菜价格变化规律,现以合肥市周谷堆农产品批发市场2005年~2014年白菜月度市场价格及相关影响因素数据为样本,通过主成分分析,利用小波神经网络智能分析方法,构建基于小波神经网络的价格预测模型,并与BP神经网络模型比较。结果表明,小波神经网络预测模型的预测精度比BP神经网络更高,且更加的稳定。该模型的构建对蔬菜价格的稳定、农业管理部门的决策支持具有重要的理论研究意义和实际价值。