论文部分内容阅读
针对目前支持向量机参数选择时人为选择的盲目性,将具有良好优化性能的蚁群优化技术应用到支持向量机惩罚函数和核函数参数的优化,提出了蚁群优化支持向量机方法。根据内燃机气门振动信号实测数据,建立了基于蚁群优化支持向量机的内燃机气门间隙故障诊断模型,并与基于遗传支持向量机和反向传播神经网络算法的模型比较。结果表明:应用蚁群优化支持向量机建立的内燃机气门间隙故障诊断模型无论从学习效率还是故障识别准确性上都优于应用另外两种算法建立的模型,能够有效地进行内燃机的故障诊断。