【摘 要】
:
针对目前显著性目标检测算法中存在的特征融合不充分、模型较为冗余等问题,提出了一种基于全局引导渐进特征融合的轻量级显著性目标检测算法。首先,使用轻量特征提取网络MobileNetV3对图像提取不同层次的多尺度特征;然后对MobileNetV3提取的高层语义特征使用轻量级多尺度感受野增强模块以进一步增强其全局特征的表征力;最后设计渐进特征融合模块对多层多尺度特征自顶而下逐步融合,并采用常用的交叉熵损失
【机 构】
:
南京信息工程大学大气环境与装备技术协同创新中心,南京信息工程大学江苏省大数据分析技术重点实验室
【基金项目】
:
国家新一代人工智能重大项目(2018AAA0100400),国家自然科学基金(61872189,61876088),江苏省自然科学基金(BK20191397,BK20170040)。
论文部分内容阅读
针对目前显著性目标检测算法中存在的特征融合不充分、模型较为冗余等问题,提出了一种基于全局引导渐进特征融合的轻量级显著性目标检测算法。首先,使用轻量特征提取网络MobileNetV3对图像提取不同层次的多尺度特征;然后对MobileNetV3提取的高层语义特征使用轻量级多尺度感受野增强模块以进一步增强其全局特征的表征力;最后设计渐进特征融合模块对多层多尺度特征自顶而下逐步融合,并采用常用的交叉熵损失函数在多个阶段对这些融合特征进行优化,得到由粗到细的显著图。整个网络模型是无需预处理和后处理的端到端结构
其他文献
近年来,基于生成对抗网络(Generative Adversarial Network, GAN)从文本描述中合成图像这一具有挑战性的任务已经取得了令人鼓舞的结果。这些方法虽然可以生成具有一般形状和颜色的图像,但通常也会生成具有不自然的局部细节且扭曲的全局图像。这是因为卷积神经网络在捕获用于像素级别图像合成的高级语义信息时效率低下,以及处于粗略状态的生成器-鉴别器由于缺少详细信息生成了有缺陷的结果
传统的深度强化学习方法依赖大量的经验样本并且难以适应新任务。元强化学习通过从以往的训练任务中提取先验知识,为智能体快速适应新任务提供了一种有效的方法。基于最大熵
子空间学习是特征提取领域中的一个重要研究方向,其通过一种线性或非线性的变换将原始数据映射到低维子空间中,并在该子空间中尽可能地保留原始数据的几何结构和有用信息。子
现有的边缘检测方法在含噪图像中的检测性能不佳。针对含噪图像的边缘检测问题,提出了利用引导核改进基于非线性结构张量的含噪图像边缘检测方法。首先,计算含噪图像的张量积。然后,根据图像梯度对张量积进行扩散,图像梯度依赖张量积本身。扩散方程中的扩散矩阵包含张量积,该张量积是通过各向异性的引导核进行空间自适应平均,而不是通过各向同性的高斯核进行平均。最后计算扩散张量积的特征值和特征向量,并基于此检测图像的边
受制于核心技术和知识产权等客观条件,国产自主芯片的研发困难重重。RISC-V作为一个开源指令集架构(ISA),具有简洁、模块化等优点,成为了国产处理器的新选择。基础数学库作为
随着信息技术的高度发展,数据成为了重要的战略资源,如何利用大数据进行查询是众多学者的研究内容。与此同时,被查询对象在未被选择时,如何利用大数据使自己能够满足用户的查
虽然现有基于深度学习的图像阴影消除方法已取得了一定的进步,但是这些方法主要关注图像本身,没有很好地探索其他额外与阴影相关的信息,因此这些方法常常存在图像纹理模糊、内容不协调等问题。针对这些问题,文中基于生成对抗网络(Generative Adversarial Network, GAN),提出了一种新的阴影消除网络模型。该方法首先从全局上生成一个粗糙的阴影消除结果,再利用与阴影相关的残差信息对粗糙
问题生成是指机器主动对一段文本进行提问,生成一个自然语言的问题。神经问题生成则是完全采用端到端的训练方式,使用神经网络完成文档和答案到问题的转换,是自然语言处理中
近年来,随着数据挖掘和机器学习的兴起,基于时间序列分析方法的研究愈加丰富。作为机器学习的经典方法,KNN(K-Nearest Neighbor)因其简单、准确度高等特性被广泛应用于时间序
刀具磨损的智能监测是影响现代机械加工业智能化发展进程的重要因素。在机械加工过程中,大多数机床通过使用传感器采集信号,从而建立刀具磨损与传感器信号之间的关系,在不中