论文部分内容阅读
决策树是数据挖掘的分类应用中采用最广泛的模型之一,但是传统的ID3、C4.5和CART等算法在应用于超大型数据库的挖掘时,有效性会降得很低,甚至出现内存溢出的现象,针对此本文提出了一种基于属性加权的随机决策树算法,并通过实验证明该算法减少了对系统资源的占用,并且对高维的大数据集具有很高的分类准确率,非常适合被用于入侵检测的分类之中。