论文部分内容阅读
针对多元时间序列模式匹配的方法难以高效、准确地刻画序列相似程度的问题,在考虑变量的量纲和特征差异的基础上,对多元时间序列进行多维分段拟合;然后,选取各个变量维度上拟合线段的倾斜角和时间跨度作为模式的描述方式,提出一种基于动态时间弯曲(DTW)的多元时间序列趋势距离匹配方法.实验结果表明,所提出的模式匹配方法对由连续型变量组成、时间跨度较大且体现一个连续、完整动作过程的多元时间序列,具有较好的匹配效果.