论文部分内容阅读
研究高分辨率遥感城市绿地信息自动提取技术是城市遥感技术应用亟待解决的问题之一。城市绿地分布破碎,林种多样,林相不齐,具有极强的非线性特征。核主成分分析(KPCA)可以表达图像像素间的高阶关系,因而可以提取图像的非线性特征,同时提供一组相互独立的主成分。通过实验分析核函数的参数,比较变换前后的平均可分性,进行波段选择。将KPCA与SAM分类方法结合,构建基于KPCA的SAM城市植被分类方案。实验结果表明,该方案比传统的分类方法精度高。城市6种绿地类型的分类总精度为80.6%;合并为草地、园地与林地绿地