论文部分内容阅读
单形进化算法(Surface-Simplex Swarm Evolution Algorithm,简称SSSE)是一种新型群体智能优化算法,该算法通过建立粒子的单形邻域搜索算子和多角色态搜索机制,具有很好地收敛效果.为了对该算法的性能进行进一步分析与讨论,同时,为了强调全局搜索的应用场景并提高算法的勘探搜索能力,提出一种改进的单形进化算法(ISSSE),ISSSE对原算法的多态平衡搜索机制进行了两点改进;然后用8个标准测试函数进行性能测试,并同不同的算法比较;最后将ISSSE算法应用于径向基神经网络(RBF)的参数优化中.实验结果表明,改进的单形进化算法(ISSSE)在其性能上具有更好的勘探搜索能力,提高了算法的求解精度和收敛速度,并且能够很好应用于RBF的参数寻优,提高了RBF的分类正确率.