改进的单形进化算法及在神经网络上的应用研究

来源 :小型微型计算机系统 | 被引量 : 0次 | 上传用户:zjzzhength
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
单形进化算法(Surface-Simplex Swarm Evolution Algorithm,简称SSSE)是一种新型群体智能优化算法,该算法通过建立粒子的单形邻域搜索算子和多角色态搜索机制,具有很好地收敛效果.为了对该算法的性能进行进一步分析与讨论,同时,为了强调全局搜索的应用场景并提高算法的勘探搜索能力,提出一种改进的单形进化算法(ISSSE),ISSSE对原算法的多态平衡搜索机制进行了两点改进;然后用8个标准测试函数进行性能测试,并同不同的算法比较;最后将ISSSE算法应用于径向基神经网络(RBF)的参数优化中.实验结果表明,改进的单形进化算法(ISSSE)在其性能上具有更好的勘探搜索能力,提高了算法的求解精度和收敛速度,并且能够很好应用于RBF的参数寻优,提高了RBF的分类正确率.
其他文献
针对基于不均衡网络评论的服务质量评价研究中存在的评论语料分布不均衡和特征词提取依赖主观经验的问题,在利用不平衡网络评论构建服务质量评价指标体系的过程中,本文提出基
交通预测在智能交通中有着重要的意义和应用.由于交通数据的复杂性和高度的非线性,精确的交通预测的核心挑战在于如何对复杂的空间相关性和时间动态建立模型.在现实生活中,我