论文部分内容阅读
为了解决全景视频目标跟踪过程中,由于光照条件变化、相似背景干扰、目标运动时产生的形变和尺度变化等因素的影响,在跟踪中会出现目标漂移、目标丢失等情况,进而导致目标跟踪算法成功率低,鲁棒性差等问题,提出一种基于长短期记忆网络和改进Real-Time MDNet网络的全景视频目标跟踪方法.算法首先采用浅层卷积神经网络提取特征,并利用自适应的RoIAlign减少特征提取过程中的像素损耗,而后运用目标特征在线更新最后一个全连接层的权重,在全连接层中实现前景背景分离并提取出目标区域,然后通过长短期记忆网络自适应