论文部分内容阅读
在复杂工业生产中 ,影响生产的因素非常多 ,使得用于软测量的神经网络模型极其复杂 .针对这个问题 ,利用主元分析法 (PCA)将影响因素重组 ,在此基础上 ,提出了一种多神经网络 (PCA- MNN)模型 .介绍了 PCA- MNN的结构及学习算法 ,并将其应用于氧化铝高压溶出过程中苛性比值及溶出率的软测量 ,利用现场实际运行数据进行仿真 ,结果表明 PCA- MNN模型能有效实现苛性比值及溶出率的在线检测