论文部分内容阅读
在煤炭开发过程中,对煤质的评价尤为重要。依靠实验室分析来确定煤质的工业组分效率比较低,成本也比较高,因此通过建立其与测井参数之间的关系来进行各组分的计算。选取自然伽马、双收时差、密度以及三侧向电阻率这四个测井参数为输入的特征参数,煤质的水分、灰分、挥发分以及固定碳的含量作为输出结果,利用在某煤田挑选的73层测井数据当作训练样本,构建了基于广义回归神经网络(GRNN)以及最小二乘支持向量机(Ls—SVM)的计算模型,从而建立了测井参数与各工业组分之间的关系。对19层的测试数据进行了检验,结果表明这两种方法均