论文部分内容阅读
在对运动目标检测构建出精准的背景模型的方法中,k均值聚类算法是一种快速且简单有效的划分法,对于大型数据集,可伸缩且高效k均值聚类算法被广泛应用。但是,该算法会对初始聚类中心的变化表现得敏感,聚类中心的变化常会使得算法误差较大。本文将介绍一种对初始聚类中心选择改进法:利用遗传算法能高效地全局搜索出最优解这一特点,克服了k均值聚类算法易陷入局部最优解的缺点。改进后的遗传算法MAGA能快速地提取出最优初始聚类中心,通过实验仿真总结出基于MAGA的k均值聚类建模精确度比较高,对检测小而多的运动目标存在很大优势。