论文部分内容阅读
提出了基于改进Hu矩的异常行为识别算法,主要对跳、加速跑、摔倒、下蹲、挥手和手拿异物六种异常行为进行识别。对视频流首先要提取运动人体轮廓,然后对所得到的轮廓进行特征提取,这里主要提取人体运动的形状特征,最后,通过模板匹配的方法,采用Hausdorff距离计算所需识别的当前行为特征向量与模板行为(正常行走的行为)特征向量之间的相似性,并通过相应的阈值判定该行为是否为异常行为。实验证明,该方法对文中给出的样本异常行为的识别率达到100%,有一定实用价值。