论文部分内容阅读
提出了一种基于改进对偶传播(CP)神经网络与隐驰尔可夫模型(HMM)相结合的混合音素识别方法.这一方法的特点是用一个具有有指导学习矢量量化(LVQ)和动态节点分配等特性的改进的CP网络生成离散HMM音素识别系统中的码书。因此,用这一方法构造的混合音素识别系统中的码书实际上是一个由有指导LVQ算法训练的具有很强分类能力的高性能分类器,这就意味着在用HMM对语音信号进行建模之前,由码书产生的观测序列中