论文部分内容阅读
黎曼流形学习(RML)是一种全局算法,但其不能较好地保持数据局部邻域的几何性质。为解决这个问题,提出一种基于黎曼流形学习(RML)的多结构算法。先对数据集进行主成分分析(PCA)投影,再构造邻域图,然后把整个数据集分为两个部分求低维嵌入坐标,对于基准点的k近邻,采用能保持其和近邻点局部性质的权值矩阵得到低维嵌入;对于其他点仍采用RML算法,使其达到既能维持数据点的全局结构,又能最大限度地保持其局部几何性质的目的。实验结果验证了该算法的有效性和实时性。